Cardiac troponin is the most effective translational safety biomarker for myocardial injury in cardiotoxicity
Proinflammatory cytokines such as TNFalpha and IL-1beta are produced in lesional skin of chronic plaque psoriasis patients, and at other sites of chronic inflammation such as arthritic joints. They play vital roles in maintaining inflammation. It has recently been suggested that activated T cell contact-mediated monocyte activation, leading to the production of proinflammatory cytokines, contributes to the pathogenesis of psoriasis and other chronic inflammatory diseases such as psoriatic arthritis and rheumatoid arthritis. Using a T cell membrane-monocyte contact bioassay, we have identified small molecule antagonists that differentially block anti-CD3/anti-CD28 activated T cell-mediated, but not LPS-stimulated, TNFalpha production from monocytes. We selected several kinase inhibitors from the Berlex/Schering kinase library and tested the effect of these compounds in blocking TNFalpha production in the T cell membrane-monocyte contact bioassay. We have demonstrated that one compound BLX-1, from a p38 MAP kinase inhibitor project, inhibited T cell-mediated TNFalpha production from monocytes by about 80%, without any effect on TNFalpha production from LPS-stimulated monocytes. Other BLX-1 analogs showed 32-83% inhibition of TNFalpha production with LPS stimulation as compared to almost 100% inhibition of T cell-mediated TNFalpha production. In contrast, PKC inhibitors BLX-5, Go6983, and Ro-31-8220, inhibited TNFalpha production from both activated T cell membrane- and LPS-stimulated monocytes to the same extent (in the range of 50-100% inhibition). Therefore, the activated T cell membrane-monocyte contact bioassay can be used to screen small molecule antagonists that specifically target adaptive but not LPS-mediated innate immunity. Small molecule TNFalpha inhibitors interfering specifically with activated T cell contact-mediated TNFalpha production from monocytes, but not with LPS-mediated TNFalpha production of myeloid cells, are predicted to have an improved side-effect profile and thus may provide more favorable therapeutics for the treatment of T cell-mediated inflammatory diseases.
详见LabEx网站(
www.u-labex.com)或来电咨询!
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
联系电话:4001619919
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家

本网站销售的所有产品及服务均不得用于人类或动物之临床诊断或治疗,仅可用于工业或者科研等非医疗目的。