Use of a glyphosate-based herbicide-induced nephrotoxicity model to investigate a panel of kidney injury biomarkers
浏览次数:55 分享:
Accidental or intentional ingestion of glyphosate surfactant-based herbicides, like Roundup(®), leads to nephrotoxicity as well as death. In this study, a panel of kidney injury biomarkers was evaluated in terms of suitability to detect acute kidney injury and dysfunction. The Roundup(®) intoxication model involved oral administration of glyphosate to rats at dose levels of 250, 500, 1200 and 2500 mg/kg. Urinary and plasma biomarker patterns were investigated at 8, 24 and 48 h after dosing. Biomarkers were quantified by absolute concentration; by normalising to urine creatinine; and by calculating the excretion rate. The diagnostic performances of each method in predicting of acute kidney injury were compared. By Receiver Operating Characteristic (ROC) analysis of the selected biomarkers, only urinary kidney injury molecule-1 (KIM-1) best predicted histological changes at 8h (best cut-off point>0.00029 μg/ml). Plasma creatinine performed better than other biomarkers at 24 h (best cut-off point>0.21 mg/dl). Urinary KIM-1 was the best early biomarker of kidney injury in this glyphosate-induced nephrotoxicity model.
详见LabEx网站( www.u-labex.com)或来电咨询!
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
联系电话:4001619919
联系邮箱:labex-mkt@u-labex.com
公众平台:多因子及组学服务专家