Novel tight-binding inhibitory factor-kappaB kinase (IKK-2) inhibitors demonstrate target-specific anti-inflammatory activities in cellular assays and following oral and local delivery in an in vivo model of airway inflammation
Nuclear factor-kappaB (NF-kappaB) is one of the major families of transcription factors activated during the inflammatory response in asthma and chronic obstructive pulmonary disease. Inhibitory factor-kappaB kinase 2 (IKK-2) has been shown to play a pivotal role in cytokine-induced NF-kappaB activation in airway epithelium and in disease-relevant cells. Nevertheless, the potential toxicity of specific IKK-2 inhibitors may be unacceptable for oral delivery in chronic obstructive pulmonary disease. Therefore, local delivery to the lungs is an attractive alternative that warrants further exploration. Here, we describe potent and selective small-molecule IKK-2 inhibitors [8-(5-chloro-2-(4-methylpiperazin-1-yl)isonicotinamido)-1-(4-fluorophenyl)-4,5-dihydro-1H-benzo[g]indazole-3-carboxamide (PHA-408) and 8-(2-(3,4-bis(hydroxymethyl)-3,4-dimethylpyrrolidin-1-yl)-5-chloroisonicotinamido)-1-(4-fluorophenyl)-4,5-dihydro-1H-benzo-[g]indazole-3-carboxamide (PF-184)] that are competitive for ATP have slow off-rates from IKK-2 and display broad in vitro anti-inflammatory activities resulting from NF-kappaB pathway inhibition. Notably, PF-184 has been designed to have high systemic clearance, which limits systemic exposure and maximizes the effects locally in the airways. We used an inhaled lipopolysaccharide-induced rat model of neutrophilia to address whether inhibiting NF-kappaB activation locally within the airways would show anti-inflammatory effects in the absence of systemic exposure. PHA-408, a low-clearance compound previously shown to be efficacious orally in a rodent model of arthritis, dose-dependently attenuated inhaled lipopolysaccharide-induced cell infiltration and cytokine production. Interestingly, PF-184 produced comparable dose-dependent anti-inflammatory activity by intratracheal administration and was as efficacious as intratracheally administered fluticasone propionate (fluticasone). Together, these results support the potential therapeutic utility of IKK-2 inhibition in inflammatory pulmonary diseases and demonstrate anti-inflammatory efficacy of an inhaled IKK-2 inhibitor in a rat airway model of neutrophilia.
详见LabEx网站(
www.u-labex.com)或来电咨询!
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
联系电话:4001619919
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家

本网站销售的所有产品及服务均不得用于人类或动物之临床诊断或治疗,仅可用于工业或者科研等非医疗目的。