Genomic and transcriptomic analyses of NF1-mutant melanoma identify potential targeted approach for treatment
浏览次数:9 分享:
There is currently no targeted therapy to treat NF1-mutant melanomas. In this study, we compared the genomic and transcriptomic signatures of NF1-mutant and NF1 wild-type melanoma to reveal potential treatment targets for this subset of patients. Genomic alterations were verified using qPCR, and differentially expressed genes were independently validated using The Cancer Genome Atlas data and immunohistochemistry. Digital spatial profiling with multiplex immunohistochemistry and immunofluorescence were used to validate the signatures. The efficacy of combinational regimens driven by these signatures was tested through in vitro assays using low-passage cell lines. Pathogenic NF1 mutations were identified in 27% of cases. NF1-mutant melanoma expressed higher proliferative markers MK167 and CDC20 than NF1 wild-type (P = 0.008), which was independently validated both in The Cancer Genome Atlas dataset (P = 0.01, P = 0.03) and with immunohistochemistry (P = 0.013, P = 0.036), respectively. Digital spatial profiling analysis showed upregulation of LY6E within the tumor cells (false discovery rate < 0.01, log2 fold change > 1), confirmed with multiplex immunofluorescence showing colocalization of LY6E in melanoma cells. The combination of MAPK/extracellular signal‒regulated kinase kinase and CDC20 coinhibition induced both cytotoxic and cytostatic effects, decreasing CDC20 expression in multiple NF1-mutant cell lines. In conclusion, NF1-mutant melanoma is associated with a distinct genomic and transcriptomic profile. Our data support investigating CDC20 inhibition with MAPK pathway inhibitors as a targeted regimen in this melanoma subtype.
详见LabEx网站( www.u-labex.com)或来电咨询!
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
联系电话:4001619919
联系邮箱:labex-mkt@u-labex.com
公众平台:多因子及组学服务专家