Epithelial-to-Mesenchymal Transition Is a Mechanism of ALK Inhibitor Resistance in Lung Cancer Independent of ALK Mutation Status
Mutations in the ALK gene are detectable in approximately 40% of ALK-rearranged lung cancers resistant to ALK inhibitors. Although epithelial-to-mesenchymal transition (EMT) is a mechanism of resistance to various targeted drugs, its involvement in ALK inhibitor resistance is largely unknown. In this study, we report that both ALK-mutant L1196M and EMT were concomitantly detected in a single crizotinib-resistant lesion in a patient with ALK-rearranged lung cancer. Digital PCR analyses combined with microdissection after IHC staining for EMT markers revealed that ALK L1196M was predominantly detected in epithelial-type tumor cells, indicating that mesenchymal phenotype and ALK mutation can coexist as independent mechanisms underlying ALK inhibitor-resistant cancers. Preclinical experiments with crizotinib-resistant lung cancer cells showed that EMT associated with decreased expression of miR-200c and increased expression of ZEB1 caused cross-resistance to new-generation ALK inhibitors alectinib, ceritinib, and lorlatinib. Pretreatment with the histone deacetylase (HDAC) inhibitor quisinostat overcame this resistance by reverting EMT in vitro and in vivo. These findings indicate that HDAC inhibitor pretreatment followed by a new ALK inhibitor may be useful to circumvent resistance constituted by coexistence of resistance mutations and EMT in the heterogeneous tumor. SIGNIFICANCE: These findings show that dual inhibition of HDAC and ALK receptor tyrosine kinase activities provides a means to circumvent crizotinib resistance in lung cancer.
详见LabEx网站(
www.u-labex.com)或来电咨询!
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
联系电话:4001619919
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家

本网站销售的所有产品及服务均不得用于人类或动物之临床诊断或治疗,仅可用于工业或者科研等非医疗目的。