The HSP-RTK-Akt axis mediates acquired resistance to Ganetespib in HER2-positive breast cancer
Breast cancer is the leading cause of cancer-related death in women worldwide. Human epidermal growth factor receptor 2 (HER2)-positive subtype comprises 20% of sporadic breast cancers and is an aggressive disease. While targeted therapies have greatly improved its management, primary and acquired resistance remain a major roadblock to making it a curable malignancy. Ganetespib, an Hsp90 (Heat shock protein 90) small molecule inhibitor, shows preferential efficacy in HER2-positive breast cancer, including therapy-refractory cases, and has an excellent safety profile in ongoing clinical trials (38 in total, six on breast cancer). However, Ganetespib itself evokes acquired resistance, which is a significant obstacle to its clinical advancement. Here, we show that Ganetespib potently, albeit temporarily, suppresses HER2-positive breast cancer in genetic mouse models, but the animals eventually succumb via acquired resistance. We found that Ganetespib-resistant tumors upregulate several compensatory HSPs, as well as a wide network of phospho-activated receptor tyrosine kinases (RTKs), many of which are HSP clients. Downstream of p-RTKs, the MAPK pathway remains suppressed in the resistant tumors, as is HER2 itself. In contrast, the p-RTK effector Akt is stabilized and phospho-activated. Notably, pharmacological inhibition of Akt significantly delays acquired Ganetespib resistance, by 50%. These data establish Akt as a unifying actionable node downstream of the broadly upregulated HSP/p-RTK resistance program and suggests that Akt co-targeting with Ganetespib may be a superior therapeutic strategy in the clinic.
详见LabEx网站(
www.u-labex.com)或来电咨询!
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
联系电话:4001619919
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家

本网站销售的所有产品及服务均不得用于人类或动物之临床诊断或治疗,仅可用于工业或者科研等非医疗目的。