Differential interaction of the two related fungal species Candida albicans and Candida dubliniensis with human neutrophils
浏览次数:37 分享:
Candida albicans, the most common facultative human pathogenic fungus is of major medical importance, whereas the closely related species Candida dubliniensis is less virulent and rarely causes life-threatening, systemic infections. Little is known, however, about the reasons for this difference in pathogenicity, and especially on the interactions of C. dubliniensis with the human immune system. Because innate immunity and, in particular, neutrophil granulocytes play a major role in host antifungal defense, we studied the responses of human neutrophils to clinical isolates of both C. albicans and C. dubliniensis. C. dubliniensis was found to support neutrophil migration and fungal cell uptake to a greater extent in comparison with C. albicans, whereas inducing less neutrophil damage and extracellular trap formation. The production of antimicrobial reactive oxygen species, myeloperoxidase, and lactoferrin, as well as the inflammatory chemokine IL-8 by neutrophils was increased when stimulated with C. dubliniensis as compared with C. albicans. However, most of the analyzed macrophage-derived inflammatory and regulatory cytokines and chemokines, such as IL-1α, IL-1β, IL-1ra, TNF-α, IL-10, G-CSF, and GM-CSF, were less induced by C. dubliniensis. Similarly, the amounts of the antifungal immunity-related IL-17A produced by PBMCs was significantly lower when challenged with C. dubliniensis than with C. albicans. These data indicate that C. dubliniensis triggers stronger early neutrophil responses than C. albicans, thus providing insight into the differential virulence of these two closely related fungal species, and suggest that this is, in part, due to their differential capacity to form hyphae.
详见LabEx网站( www.u-labex.com)或来电咨询!
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
联系电话:4001619919
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家