Pathogenic TNF-α drives peripheral nerve inflammation in an Aire-deficient model of autoimmunity
浏览次数:49 分享:
Immune cells infiltrate the peripheral nervous system (PNS) after injury and with autoimmunity, but their net effect is divergent. After injury, immune cells are reparative, while in inflammatory neuropathies (e.g., Guillain Barré Syndrome and chronic inflammatory demyelinating polyneuropathy), immune cells are proinflammatory and promote autoimmune demyelination. An understanding of immune cell phenotypes that distinguish these conditions may, therefore, reveal new therapeutic targets for switching immune cells from an inflammatory role to a reparative state. In an autoimmune regulator (Aire)-deficient mouse model of inflammatory neuropathy, we used single-cell RNA sequencing of sciatic nerves to discover a transcriptionally heterogeneous cellular landscape, including multiple myeloid, innate lymphoid, and lymphoid cell types. Analysis of cell-cell ligand-receptor interactions uncovered a macrophage-mediated tumor necrosis factor-α (TNF-α) signaling axis that is induced by interferon-γ and required for initiation of autoimmune demyelination. Developmental trajectory visualization suggested that TNF-α signaling is associated with metabolic reprogramming of macrophages and polarization of macrophages from a reparative state in injury to a pathogenic, inflammatory state in autoimmunity. Autocrine TNF-α signaling induced macrophage expression of multiple genes (Clec4e, Marcksl1, Cxcl1, and Cxcl10) important in immune cell activation and recruitment. Genetic and antibody-based blockade of TNF-α/TNF-α signaling ameliorated clinical neuropathy, peripheral nerve infiltration, and demyelination, which provides preclinical evidence that the TNF-α axis may be effectively targeted to resolve inflammatory neuropathies. Keywords: CIDP; TNF-α; autoimmunity; macrophages; peripheral nerve.
详见LabEx网站( www.u-labex.com)或来电咨询!
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
联系电话:4001619919
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家