Personalized neoantigen vaccine combined with PD-1 blockade increases CD8+ tissue-resident memory T-cell infiltration in preclinical hepatocellular carcinoma models
Background: Personalized neoantigen vaccine could induce a robust antitumor immune response in multiple cancers, whose efficacy could be further enhanced by combining with programmed cell death 1 blockade (α-PD-1). However, the corresponding immune response and synergistic mechanisms remain largely unclear. Here, we aimed to develop clinically available combinational therapeutic strategy and further explore its potential antitumor mechanisms in hepatocellular carcinoma (HCC). Methods: Neoantigen peptide vaccine (NeoVAC) for murine HCC cell line Hepa1-6 was developed and optimized by neoantigen screening and adjuvant optimization. Then the synergistic efficacy and related molecular mechanisms of NeoVAC combined with α-PD-1 in HCC were evaluated by orthotopic HCC mouse model, single-cell RNA sequencing, tetramer flow cytometry, immunofluorescence, etc. The tumor-killing capacity of CD8+ tissue-resident memory T cells (CD8+ TRMs) was assessed by orthotopic HCC mouse model, and autologous patient-derived cells. Results: NeoVAC, which consisted of seven high immunogenic neoantigen peptides and clinical-grade Poly(I:C), could generate a strong antitumor immune response in HCC mouse models. Significantly, its efficacy could be further improved by combining with α-PD-1, with 80% of durable tumor regression and long-term immune memory in orthotopic HCC models. Moreover, in-depth analysis of the tumor immune microenvironment showed that the percentage of CD8+ TRMs was remarkedly increased in NeoVAC plus α-PD-1 treatment group, and positively associated with the antitumor efficacy. In vitro and in vivo T-cell cytotoxicity assay further confirmed the strong tumor-killing capacity of CD8+ TRMs sorting from orthotopic mouse HCC or patient's HCC tissue. Conclusions: This study showed that NeoVAC plus α-PD-1 could induce a strong antitumor response and long-term tumor-specific immune memory in HCC by increasing CD8+ TRMs infiltration, which might serve as a potential immune-therapeutic target for HCC. Keywords: immunotherapy; liver neoplasms; tumor microenvironment; vaccination.
详见LabEx网站(
www.u-labex.com)或来电咨询!
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
联系电话:4001619919
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家

本网站销售的所有产品及服务均不得用于人类或动物之临床诊断或治疗,仅可用于工业或者科研等非医疗目的。