A Strategy of On-Demand Immune Activation for Antifungal Treatment Using Near-Infrared Responsive Conjugated Polymer Nanoparticles
浏览次数:51 分享:
Pathogenic fungal infection is a major clinical threat because pathogenic fungi have developed resistant mechanisms to evade the innate immune response, especially interactions with macrophages. Herein, a strategy to activate immune responses of macrophages to fungi based on near-infrared (NIR) responsive conjugated polymer nanoparticles (CPNs-M) is reported for antifungal immunotherapy. Under NIR light irradiation, CPNs-M exposes β-glucan on the surface of fungal conidia by photothermal damage and drug released from CPNs-M. The exposed β-glucan elicits macrophage recognition and subsequently activates calcium-calmodulin (Ca2+-CaM) signaling followed by the LC3-associated phagocytosis (LAP) pathway to kill fungal conidia. Consequently, a remarkable elimination of intracellular fugal conidia and successful treatment of fungal pneumonia are achieved. This remote regulation strategy to restore pathogen-immune cell interaction on demand provides a new insight into combatting intractable intracellular infections. Keywords: antifungal immunotherapy; conjugated polymer; immune activation; nanoparticles; remote regulation.
详见LabEx网站( www.u-labex.com)或来电咨询!
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
联系电话:4001619919
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家