Polled Digital Cell Sorter (p-DCS): Automatic identification of hematological cell types from single cell RNA-sequencing clusters
浏览次数:36 分享:
Background: Single cell RNA sequencing (scRNA-seq) brings unprecedented opportunities for mapping the heterogeneity of complex cellular environments such as bone marrow, and provides insight into many cellular processes. Single cell RNA-seq has a far larger fraction of missing data reported as zeros (dropouts) than traditional bulk RNA-seq, and unsupervised clustering combined with Principal Component Analysis (PCA) can be used to overcome this limitation. After clustering, however, one has to interpret the average expression of markers on each cluster to identify the corresponding cell types, and this is normally done by hand by an expert curator. Results: We present a computational tool for processing single cell RNA-seq data that uses a voting algorithm to automatically identify cells based on approval votes received by known molecular markers. Using a stochastic procedure that accounts for imbalances in the number of known molecular signatures for different cell types, the method computes the statistical significance of the final approval score and automatically assigns a cell type to clusters without an expert curator. We demonstrate the utility of the tool in the analysis of eight samples of bone marrow from the Human Cell Atlas. The tool provides a systematic identification of cell types in bone marrow based on a list of markers of immune cell types, and incorporates a suite of visualization tools that can be overlaid on a t-SNE representation. The software is freely available as a Python package at https://github.com/sdomanskyi/DigitalCellSorter . Conclusions: This methodology assures that extensive marker to cell type matching information is taken into account in a systematic way when assigning cell clusters to cell types. Moreover, the method allows for a high throughput processing of multiple scRNA-seq datasets, since it does not involve an expert curator, and it can be applied recursively to obtain cell sub-types. The software is designed to allow the user to substitute the marker to cell type matching information and apply the methodology to different cellular environments. Keywords: Biomarkers; Bone marrow; Cell type identification; Single cell RNA sequencing.
详见LabEx网站( www.u-labex.com)或来电咨询!
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
联系电话:4001619919
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家