Schlafen12 Reduces the Aggressiveness of Triple Negative Breast Cancer through Post-Transcriptional Regulation of ZEB1 That Drives Stem Cell Differentiation
Background/aims: Schlafen12 (SLFN12) promotes human intestinal and prostatic epithelial differentiation. We sought to determine whether SLFN12 reduces triple-negative breast cancer (TNBC) aggressiveness. Methods: We validated bioinformatics analyses of publicly available databases by staining human TNBC. After virally overexpressing or siRNA-reducing SLFN12 in TNBC cell lines, we measured proliferation by CCK-8 assay, invasion into basement-membrane-coated pores, mRNA by q-RT-PCR and protein by Western blotting. Flow cytometry assessed proliferation and stem cell marker expression, and sorted CD44+/CD24- cells. Stemness was also assessed by mammosphere formation, and translation by click-it-AHA chemistry. Results: SLFN12 expression was lower in TNBC tumors and correlated with survival. SLFN12 overexpression reduced TNBC MDA-MB-231, BT549, and Hs578T proliferation. In MDA-MB-231 cells, AdSLFN12 reduced invasion, promoted cell cycle arrest, increased E-cadherin promoter activity, mRNA, and protein, and reduced vimentin expression and protein. SLFN12 knockdown increased vimentin. AdSLFN12 reduced the proportion of MDA-MB-231 CD44+CD24- cells, with parallel differentiation changes. SLFN12 overexpression reduced MDA-MB-231 mammosphere formation. SLFN12 overexpression decreased ZEB1 and Slug protein despite increased ZEB1 and Slug mRNA in all three lines. SLFN12 overexpression accelerated MDA-MB-231 ZEB1 proteasomal degradation and slowed ZEB1 translation. SLFN12 knockdown increased ZEB1 protein. Coexpressing ZEB1 attenuated the SLFN12 effect on E-cadherin mRNA and proliferation in all three lines. Conclusion: SLFN12 may reduce TNBC aggressiveness and improve survival in part by a post-transcriptional decrease in ZEB1 that promotes TNBC cancer stem cell differentiation.Keywords: Schlafen12; TNBC; Breast cancer stem cell; Differentiation.
详见LabEx网站(
www.u-labex.com)或来电咨询!
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
联系电话:4001619919
联系邮箱:labex-mkt@u-labex.com
公众平台:多因子及组学服务专家
联系邮箱:labex-mkt@u-labex.com
公众平台:多因子及组学服务专家

上一篇
Expression Profile of New Marker Genes Involved in Differentiation of Canine Adipose-Derived Stem Cells into Osteoblasts
下一篇
Single‐Cell Transcriptomics of Engineered Cardiac Tissues From Patient‐Specific Induced Pluripotent Stem Cell–Derived Cardiomyocytes Reveals Abnormal Developmental Trajectory and Intrinsic Contractile Defects in Hypoplastic Right Heart Syndrome
本网站销售的所有产品及服务均不得用于人类或动物之临床诊断或治疗,仅可用于工业或者科研等非医疗目的。