Promoting effect of Tmsb4x on the differentiation of peripheral blood mononuclear cells to dendritic cells during septicemia
Background: Thymosin beta 4 × (Tmsb4x) has been highlighted as an important regulator in immune and inflammation responses. Promoted differentiation of mononuclear cells into dendritic cells (DCs) exert a beneficial effect on septicemia. Herein, we investigated the effects of Tmsb4x on the mononuclear cells to affect immune responses during septicemia. Methods: Initially, we isolated peripheral blood samples from healthy individuals and patients with septicemia for extraction of mononuclear cells, followed by Tmsb4x expression quantification. A cell model was constructed with mononuclear cells through lipopolysaccharide stimulation. The viability and apoptosis were evaluated in response to Tmsb4x silencing or re-expression. Additionally, the proportion of DCs was assessed by determining levels of inflammatory factors as well as by flow cytometric analysis. A mouse septicemia model was developed for in vivo validation. Results: Cell and animal models demonstrated decreased Tmsb4x expression in the setting of septicemia, which led to increased inflammatory response and reduced proportion of DCs, along with inhibited mononuclear cell viability and promoted apoptosis. However, restoration of Tmsb4x facilitated the differentiation of mononuclear cells into DCs. Conclusion: To conclude, upregulated Tmsb4x promoted the generation of DCs from mononuclear cells, which contributed to deep understanding of underpinning mechanisms in the development of septicemia.Keywords: Dendritic cells; Differentiation; Mononuclear cells; Septicemia; Tmsb4x.
详见LabEx网站(
www.u-labex.com)或来电咨询!
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
联系电话:4001619919
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家

本网站销售的所有产品及服务均不得用于人类或动物之临床诊断或治疗,仅可用于工业或者科研等非医疗目的。