Bone marrow mesenchymal stem cell-derived exosomes attenuate cerebral ischemia-reperfusion injury-induced neuroinflammation and pyroptosis by modulating microglia M1/M2 phenotypes
Background: Pyroptosis mediated by NLRP3 inflammasome plays a critical role in the pathogenesis of cerebral ischemia-reperfusion (I/R) injury. Mounting evidences have verified the efficacy of exosomes by relieving the inflammatory response during cerebral I/R injury, but the specific mechanism has not been well elucidated. This study aimed to clarify whether the neuroprotective effects of bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos) are associated with the attenuation of NLPR3-mediated neuron pyroptosis by modulating microglial polarization. Methods: Rats were initially subjected to middle cerebral artery occlusion (MCAO) followed by reperfusion. Then, BMSC-Exos were administered intravenously 2 h after MCAO. The neuroprotective effects were measured using a modified neurological severity score(mNSS), triphenyltetrazolium chloride (TTC) staining, brain water content, Morris water maze,and CatWalk system. Western blotting and immunofluorescence staining were applied to detect NLRP3 inflammasome and pyroptosis. Microglial polarization was determined by real-time polymerase chain reaction (RT-PCR) and immunofluorescence staining. To mimic cerebral I/R injury in vitro, BV2 and PC12 cells were exposed to oxygen-glucose deprivation/reoxygenation. After treatment with PBS, BMSC-Exos, IL-4, or LPS, BV2 cells were co-cultured with PC12 cells in a Transwell system. Results: BMSC-Exos reduced the brain infarct area and brain water content at 24 h dose dependently and improved the neurological function up to 5 weeks after stroke. In vivo, NLRP3 inflammasome- and pyroptosis-related proteins were mainly expressed on neurons and downregulated by BMSC-Exos. Furthermore, cerebral I/R injury-induced M1-polarized microglia could be shifted toward M2 phenotype by BMSC-Exos. In vitro, BMSC-Exos alleviated the neuron pyroptosis partially by modulating microglial polarization. Conclusion: BMSC-Exos could ameliorate cerebral I/R injury via suppression of NLRP3 inflammasome-mediated inflammation and pyroptosis by modulating microglial polarization.Keywords: BMSC-Exosomes; Cerebral ischemia-reperfusion injury; Microglial polarization; Neuroinflammation; Pyroptosis.
详见LabEx网站(
www.u-labex.com)或来电咨询!
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
联系电话:4001619919
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家

本网站销售的所有产品及服务均不得用于人类或动物之临床诊断或治疗,仅可用于工业或者科研等非医疗目的。