Exosomes derived from umbilical cord mesenchymal stem cells protect cartilage and regulate the polarization of macrophages in osteoarthritis
Background: Osteoarthritis (OA) is one of the most common joint diseases and a major global public health concern. Mesenchymal stem cells (MSCs) have been widely used for the treatment of OA owing to their paracrine secretion of trophic factors, a phenomenon in which exosomes may play a major role. Here, we investigate the potential of exosomes from human umbilical cord-derived MSCs (hUC-MSCs-Exos) in alleviating OA. Methods: The hUC-MSCs-Exos were harvested from hUC-MSC-conditioned medium using ultracentrifugation. Rats with surgically-induced OA were intra-articularly injected with hUC-MSCs-Exos. The effect of hUC-MSCs-Exos in repairing osteoarticular cartilage was assessed using hematoxylin and eosin (HE) staining, safranin-O and fast green staining and immunohistochemistry. The in vitro experiments were further carried out to verify the therapeutic effect. The effects of hUC-MSCs-Exos on the proliferation and migration of human chondrocytes were evaluated using the cell counting kit-8, EdU-555 cell proliferation kit, and transwell assays. Annexin V-FITC/PI staining were used to evaluate the effect of exosomes on chondrocyte apoptosis. An in vitro model of human articular chondrocytes treated with interleukin 1 beta (IL-1β) was used to evaluate the effects of exosomes, analyses involved using quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence, and western blotting. The role of hUC-MSCs-Exos in macrophage polarization was examined in the monocyte cell line, Tohoku Hospital Pediatrics-1 (THP-1) by qRT-PCR and immunofluorescence. Results: The results showed that hUC-MSCs-Exos prevented severe damage to the knee articular cartilage in the rat OA model. We confirmed the high efficacy of hUC-MSCs-Exos in promoting chondrocyte proliferation and migration and inhibiting chondrocyte apoptosis. Additionally, hUC-MSCs-Exos could reverse IL-1β-induced injury of chondrocytes and regulate the polarization of macrophages in vitro. Conclusions: There is potential for hUC-MSCs-Exos to be used as a treatment strategy for OA.Keywords: Human umbilical cord-derived-mesenchymal stem cell (hUC-MSCs); chondrocyte; exosome; macrophage; osteoarthritis (OA).
详见LabEx网站(
www.u-labex.com)或来电咨询!
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
联系电话:4001619919
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家

本网站销售的所有产品及服务均不得用于人类或动物之临床诊断或治疗,仅可用于工业或者科研等非医疗目的。