With the development of spatially resolved transcriptomics technologies, it is now possible to explore the gene expression profiles of single cells while preserving their spatial context. Spatial clustering plays a key role in spatial transcriptome data analysis. In the past 2 years, several graph neural network-based methods have emerged, which significantly improved the accuracy of spatial clustering. However, accurately identifying the boundaries of spatial domains remains a challenging task. In this article, we propose stAA, an adversarial variational graph autoencoder, to identify spatial domain. stAA generates cell embedding by leveraging gene expression and spatial information using graph neural networks and enforces the distribution of cell embeddings to a prior distribution through Wasserstein distance. The adversarial training process can make cell embeddings better capture spatial domain information and more robust. Moreover, stAA incorporates global graph information into cell embeddings using labels generated by pre-clustering. Our experimental results show that stAA outperforms the state-of-the-art methods and achieves better clustering results across different profiling platforms and various resolutions. We also conducted numerous biological analyses and found that stAA can identify fine-grained structures in tissues, recognize different functional subtypes within tumors and accurately identify developmental trajectories.
Keywords:adversarial learning; graph autoencoder; graph neural network; spatial domain; spatial transcriptomics.
stAA: adversarial graph autoencoder for spatial clustering task of spatially resolved transcriptomics
详见LabEx网站(
www.u-labex.com)或来电咨询!
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
联系电话:4001619919
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家

上一篇
Tumor lineage-specific immune response in brain metastatic disease: opportunities for targeted immunotherapy regimen?
下一篇
Combining single-cell RNA sequencing with spatial transcriptome analysis reveals dynamic molecular maps of cambium differentiation in the primary and secondary growth of trees
本网站销售的所有产品及服务均不得用于人类或动物之临床诊断或治疗,仅可用于工业或者科研等非医疗目的。