Overcoming Expressional Drop-outs in Lineage Reconstruction from Single-Cell RNA-Sequencing Data
浏览次数:45 分享:
Single-cell lineage tracing provides crucial insights into the fates of individual cells. Single-cell RNA sequencing (scRNA-seq) is commonly applied in modern biomedical research, but genetics-based lineage tracing for scRNA-seq data is still unexplored. Variant calling from scRNA-seq data uniquely suffers from "expressional drop-outs," including low expression and allelic bias in gene expression, which presents significant obstacles for lineage reconstruction. We introduce SClineager, which infers accurate evolutionary lineages from scRNA-seq data by borrowing information from related cells to overcome expressional drop-outs. We systematically validate SClineager and show that genetics-based lineage tracing is applicable for single-cell-sequencing studies of both tumor and non-tumor tissues using SClineager. Overall, our work provides a powerful tool that can be applied to scRNA-seq data to decipher the lineage histories of cells and that could address a missing opportunity to reveal valuable information from the large amounts of existing scRNA-seq data.
Keywords:drop-out; genetics; lineage tracing; scRNA-seq.
详见LabEx网站( www.u-labex.com)或来电咨询!
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
联系电话:4001619919
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家