Translatable Drug-Loaded Iron Oxide Nanophore Sensitizes Murine Melanoma Tumors to Monoclonal Antibody Immunotherapy
浏览次数:16 分享:
Macrophages comprise a significant portion of the immune cell compartment within tumors and are known contributors to tumor pathology; however, cancer immunotherapies targeting these cells are not clinically available. The iron oxide nanoparticle, ferumoxytol (FH), may be utilized as a nanophore for drug delivery to tumor-associated macrophages. We have demonstrated that a vaccine adjuvant, monophosphoryl lipid A (MPLA), can be stably captured within the carbohydrate shell of ferumoxytol without chemical modification of either the drug or the nanophore. This drug-nanoparticle combination (FH-MPLA) activated macrophages to an antitumorigenic phenotype at clinically relevant concentrations. In the immunotherapy-resistant B16-F10 model of murine melanoma, FH-MPLA treatment induced tumor necrosis and regression in combination with agonistic α-CD40 monoclonal antibody therapy. FH-MPLA, composed of clinically approved nanoparticle and drug payload, represents a potential cancer immunotherapy with translational relevance. FH-MPLA may be useful as an adjunctive therapy to existing antibody-based cancer immunotherapies which target only lymphocytic cells, reshaping the tumor immune environment.
Keywords:MRI; cancer immunotherapy; drug delivery; ferumoxytol; iron oxide nanoparticles; macrophages; melanoma.
详见LabEx网站( www.u-labex.com)或来电咨询!
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
联系电话:4001619919
联系邮箱:labex-mkt@u-labex.com
公众平台:多因子及组学服务专家