Two-dimensional Ti3C2 nanosheets have been extensively used in biomedical fields and are mostly designed to enter the circulatory system. However, few studies have focused on the in vivo anatomical location and physiological function of major organs on exposure to Ti3C2 nanosheets. This study attempts to determine whether and how Ti3C2 nanosheets disrupt the physiological function of the involved organs. Our studies demonstrated that Ti3C2 nanosheets were mainly distributed in the lungs and liver after entering circulation. In the lungs, they were retained in the cytoplasm of alveolar epithelial cells and endothelial cells, and inhibited pulmonary surfactant protein B (SP-B) expression on alveolar epithelial cell, causing increased airway resistance-induced respiratory disorder following a 28-day Ti3C2 nanosheet exposure. Furthermore, our data showed that Ti3C2 nanosheets did not cause abnormal proinflammatory cytokines and histopathological changes. These findings demonstrated that Ti3C2 nanosheets might disturb respiration without inflammatory responses and pathological lesions, suggesting that these effects may occur by decreasing SP-B-mediated airway resistance. This indicates that organ function maintenance differs from biological safety for Ti3C2 nanosheets, an important consideration during potential clinical application and human exposure.
Keywords:Alveolar epithelial cell; Pulmonary surfactant protein; Respiratory dysfunction; Ti(3)C(2) nanosheets; Tissue distribution.
Biodistribution, inter-/intra-cellular localization and respiratory dysfunction induced by Ti3C2 nanosheets: Involvement of surfactant protein down-regulation in alveolar epithelial cells
详见LabEx网站(
www.u-labex.com)或来电咨询!
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
联系电话:4001619919
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家

本网站销售的所有产品及服务均不得用于人类或动物之临床诊断或治疗,仅可用于工业或者科研等非医疗目的。