The dipeptidyl peptidase-4 inhibitor linagliptin attenuates inflammation and accelerates epithelialization in wounds of diabetic ob/ob mice
浏览次数:179 分享:
Purpose: We sought to determine whether phosphoinositide 3-kinase (PI3K) pathway mutation or activation state and rapamycin-induced feedback loop activation of Akt is associated with rapamycin sensitivity or resistance.

Experimental design: Cancer cell lines were tested for rapamycin sensitivity, Akt phosphorylation, and mTOR target inhibition. Mice injected with breast or neuroendocrine cancer cells and patients with neuroendocrine tumor (NET) were treated with rapalogs and Akt phosphorylation was assessed.

Results: Thirty-one cell lines were rapamycin sensitive (RS) and 12 were relatively rapamycin resistant (RR; IC(50) > 100 nmol/L). Cells with PIK3CA and/or PTEN mutations were more likely to be RS (P = 0.0123). Akt phosphorylation (S473 and T308) was significantly higher in RS cells (P < 0.0001). Rapamycin led to a significantly greater pathway inhibition and greater increase in p-Akt T308 (P < 0.0001) and p-Akt S473 (P = 0.0009) in RS cells. Rapamycin and everolimus significantly increased Akt phosphorylation but inhibited growth in an in vivo NET model (BON). In patients with NETs treated with everolimus and octreotide, progression-free survival correlated with p-Akt T308 in pretreatment (R = 0.4762, P = 0.0533) and on-treatment tumor biopsies (R = 0.6041, P = 0.0102). Patients who had a documented partial response were more likely to have an increase in p-Akt T308 with treatment compared with nonresponders (P = 0.0146).

Conclusion: PIK3CA/PTEN genomic aberrations and high p-Akt levels are associated with rapamycin sensitivity in vitro. Rapamycin-mediated Akt activation is greater in RS cells, with a similar observation in patients with clinical responses on exploratory biomarker analysis; thus feedback loop activation of Akt is not a marker of resistance but rather may function as an indicator of rapamycin activity.

 

乐备实是国内专注于提供高质量蛋白检测以及组学分析服务的实验服务专家,自2018年成立以来,乐备实不断寻求突破,公司的服务技术平台已扩展到单细胞测序、空间多组学、流式检测、超敏电化学发光、Luminex多因子检测、抗体芯片、PCR Array、ELISA、Elispot、PLA蛋白互作、多色免疫组化、DSP空间多组学等30多个,建立起了一套涵盖基因、蛋白、细胞以及组织水平实验的完整检测体系。

 
我们可提供从样本运输、储存管理、样本制备、样本检测到检测数据分析的全流程服务。凭借严格的实验室管理流程、标准化实验室操作、原始数据储存体系以及实验项目管理系统,已经为超过3000家客户单位提供服务,年检测样本超过100万,受到了广大客户的信任与支持。

声明:本篇文章在创作中部分采用了人工智能辅助。如有任何内容涉及版权或知识产权问题,敬请告知,我们承诺将在第一时间核实并撤下。

详见LabEx网站( www.u-labex.com)或来电咨询!
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
联系电话:4001619919
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家