Computational assignment of cell-cycle stage from single-cell transcriptome data
浏览次数:38 分享:
The transcriptome of single cells can reveal important information about cellular states and heterogeneity within populations of cells. Recently, single-cell RNA-sequencing has facilitated expression profiling of large numbers of single cells in parallel. To fully exploit these data, it is critical that suitable computational approaches are developed. One key challenge, especially pertinent when considering dividing populations of cells, is to understand the cell-cycle stage of each captured cell. Here we describe and compare five established supervised machine learning methods and a custom-built predictor for allocating cells to their cell-cycle stage on the basis of their transcriptome. In particular, we assess the impact of different normalisation strategies and the usage of prior knowledge on the predictive power of the classifiers. We tested the methods on previously published datasets and found that a PCA-based approach and the custom predictor performed best. Moreover, our analysis shows that the performance depends strongly on normalisation and the usage of prior knowledge. Only by leveraging prior knowledge in form of cell-cycle annotated genes and by preprocessing the data using a rank-based normalisation, is it possible to robustly capture the transcriptional cell-cycle signature across different cell types, organisms and experimental protocols.
详见LabEx网站( www.u-labex.com)或来电咨询!
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
联系电话:4001619919
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家