Bone Marrow Mesenchymal Stem Cells-Derived Exosomal MiR-29b-3p Regulates Aging-Associated Insulin Resistance
Insulin resistance is the major pathological characteristic of type 2 diabetes, and the elderly often develop insulin resistance. However, the deep-seated mechanisms for aging-related insulin resistance remain unclear. Here, we showed that nanosized exosomes released by bone marrow mesenchymal stem cells (BM-MSCs) of aged mice could be taken up by adipocytes, myocytes, and hepatocytes, resulting in insulin resistance both in vivo and in vitro. Using microRNA (miRNA) array assays, we found that the amount of miR-29b-3p was dramatically increased in exosomes released by BM-MSCs of aged mice. Mechanistically, SIRT1 (sirtuin 1) was identified to function as the downstream target of exosomal miR-29b-3p in regulating insulin resistance. Notably, utilizing an aptamer-mediated nanocomplex delivery system that down-regulated the level of miR-29b-3p in BM-MSCs-derived exosomes significantly ameliorated the insulin resistance of aged mice. Meanwhile, BM-MSCs-specific overexpression of miR-29b-3p induced insulin resistance in young mice. Taken together, these findings suggested that BM-MSCs-derived exosomal miR-29b-3p could modulate aging-related insulin resistance, which may serve as a potential therapeutic target for aging-associated insulin resistance.Keywords: BM-MSCs; SIRT1; exosome; insulin resistance; microRNA.
详见LabEx网站(
www.u-labex.com)或来电咨询!
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
联系电话:4001619919
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家

本网站销售的所有产品及服务均不得用于人类或动物之临床诊断或治疗,仅可用于工业或者科研等非医疗目的。