Astroglial TLR9 antagonism promotes chemotaxis and alternative activation of macrophages via modulation of astrocyte-derived signals: implications for spinal cord injury
浏览次数:243 分享:
Background: The recruitment of immune system cells into the central nervous system (CNS) has a profound effect on the outcomes of injury and disease. Glia-derived chemoattractants, including chemokines, play a pivotal role in this process. In addition, cytokines and chemokines influence the phenotype of infiltrating immune cells. Depending on the stimuli present in the local milieu, infiltrating macrophages acquire the classically activated M1 or alternatively activated M2 phenotypes. The polarization of macrophages into detrimental M1 versus beneficial M2 phenotypes significantly influences CNS pathophysiology. Earlier studies indicated that a toll-like receptor 9 (TLR9) antagonist modulates astrocyte-derived cytokine and chemokine release. However, it is not known whether these molecular changes affect astrocyte-induced chemotaxis and polarization of macrophages. The present studies were undertaken to address these issues. Methods: The chemotaxis and polarization of mouse peritoneal macrophages by spinal cord astrocytes were evaluated in a Transwell co-culture system. Arrays and ELISA were utilized to quantify chemokines in the conditioned medium (CM) of pure astrocyte cultures. Immunostaining for M1- and M2-specific markers characterized the macrophage phenotype. The percentage of M2 macrophages at the glial scar was determined by stereological approaches in mice sustaining a mid-thoracic spinal cord contusion injury (SCI) and intrathecally treated with oligodeoxynucleotide 2088 (ODN 2088), the TLR9 antagonist. Statistical analyses used two-tailed independent-sample t-test and one-way analysis of variance (ANOVA) followed by Tukey's post hoc test. A p value < 0.05 was considered to be statistically significant. Results: ODN 2088-treated astrocytes significantly increased the chemotaxis of peritoneal macrophages via release of chemokine (C-C motif) ligand 1 (CCL1). Vehicle-treated astrocytes polarized macrophages into the M2 phenotype and ODN 2088-treated astrocytes promoted further M2 polarization. Reduced CCL2 and CCL9 release by astrocytes in response to ODN 2088 facilitated the acquisition of the M2 phenotype, suggesting that CCL2 and CCL9 are negative regulators of M2 polarization. The percentage of M2 macrophages at the glial scar was higher in mice sustaining a SCI and receiving ODN 2088 treatment as compared to vehicle-treated injured controls. Conclusions: TLR9 antagonism could create a favorable environment during SCI by supporting M2 macrophage polarization and chemotaxis via modulation of astrocyte-to-macrophage signals.Keywords: Astrocyte; Chemokine; Chemotaxis; Cytokine; Innate immune receptors; Macrophage; Microglia; Spinal cord injury; Toll-like receptor.

 

乐备实是国内专注于提供高质量蛋白检测以及组学分析服务的实验服务专家,自2018年成立以来,乐备实不断寻求突破,公司的服务技术平台已扩展到单细胞测序、空间多组学、流式检测、超敏电化学发光、Luminex多因子检测、抗体芯片、PCR Array、ELISA、Elispot、PLA蛋白互作、多色免疫组化、DSP空间多组学等30多个,建立起了一套涵盖基因、蛋白、细胞以及组织水平实验的完整检测体系。

 
我们可提供从样本运输、储存管理、样本制备、样本检测到检测数据分析的全流程服务。凭借严格的实验室管理流程、标准化实验室操作、原始数据储存体系以及实验项目管理系统,已经为超过3000家客户单位提供服务,年检测样本超过100万,受到了广大客户的信任与支持。

声明:本篇文章在创作中部分采用了人工智能辅助。如有任何内容涉及版权或知识产权问题,敬请告知,我们承诺将在第一时间核实并撤下。

详见LabEx网站( www.u-labex.com)或来电咨询!
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
联系电话:4001619919
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家