Predicting antigen specificity of single T cells based on TCR CDR3 regions
浏览次数:96 分享:
It has recently become possible to simultaneously assay T-cell specificity with respect to large sets of antigens and the T-cell receptor sequence in high-throughput single-cell experiments. Leveraging this new type of data, we propose and benchmark a collection of deep learning architectures to model T-cell specificity in single cells. In agreement with previous results, we found that models that treat antigens as categorical outcome variables outperform those that model the TCR and antigen sequence jointly. Moreover, we show that variability in single-cell immune repertoire screens can be mitigated by modeling cell-specific covariates. Lastly, we demonstrate that the number of bound pMHC complexes can be predicted in a continuous fashion providing a gateway to disentangle cell-to-dextramer binding strength and receptor-to-pMHC affinity. We provide these models in the Python package TcellMatch to allow imputation of antigen specificities in single-cell RNA-seq studies on T cells without the need for MHC staining.
Keywords:T-cell receptors; antigen specificity; multimodal; single cell; supervised learning.
详见LabEx网站( www.u-labex.com)或来电咨询!
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
联系电话:4001619919
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家