Atractylodin ameliorates ovalbumin‑induced asthma in a mouse model and exerts immunomodulatory effects on Th2 immunity and dendritic cell function
Asthma is a leading allergic disease worldwide, demonstrating an ever‑increasing prevalence over the past two decades. Asthma is characterized by allergen‑associated airway hyperresponsiveness (AHR) that primarily results from T helper 2 (Th2) cell inflammation, in which dendritic cells (DCs) serve an important role in determining T cell development after encountering an antigen. Atractylodin (ATL), a polyethene alkyne extracted from Atractylodis rhizoma (also known as Cangzhu), has proven effective in treating digestive disorders, rheumatic disease and influenza. In addition, ATL was discovered to alleviate mouse collagen‑induced arthritis via regulating DC maturation. The present study aimed to investigate the effect of ATL on asthma given that DCs serve an essential role in Th2‑mediated inflammation in asthma. Mouse model of asthma was induced by ovalbumin (OVA). OVA‑induced airway hyperresponsiveness (AHR) and inflammatory cells in bronchoalveolar lavage fluid (BALF) were detected. The production of IgE and IgG1 in serum and cytokines in BALF were detected by ELISA. The effects of ATL on dendritic cells maturation and T cell expansion were detected by flow cytometry analysis and 3H‑thymidine incorporation. Using a model of OVA‑induced asthma, it was demonstrated that ATL ameliorated AHR and decreased the levels of IL‑4, IL‑5 and IL‑13 in bronchoalveolar lavage fluid (BALF), and OVA‑specific IgE and IgG1 in the serum. OVA‑stimulated splenocytes were used to demonstrated that ATL decreased cell expansion and the production of IL‑4, IL‑5 and IL‑13 in the culture medium. In order to determine the cellular mechanism of ATL in asthma, splenic DCs were isolated and it was subsequently observed that ATL downregulated the expression levels of CD40 and CD80. Furthermore, OVA‑stimulated CD4+ T cells were co‑cultured with splenic DCs, which revealed that ATL‑treated splenic DCs led to impaired cellular proliferation and the production of IL‑4, IL‑5 and IL‑13 in OVA‑stimulated T cells. In conclusion, these results indicated that ATL may suppress antigen‑specific Th2 responses in an OVA‑induced allergic asthma model via regulating DCs. Therefore, ATL may exhibit therapeutic potential in the management of asthma and other allergic diseases presenting with Th2 inflammation.
乐备实是国内专注于提供高质量蛋白检测以及组学分析服务的实验服务专家,自2018年成立以来,乐备实不断寻求突破,公司的服务技术平台已扩展到单细胞测序、空间多组学、流式检测、超敏电化学发光、Luminex多因子检测、抗体芯片、PCR Array、ELISA、Elispot、PLA蛋白互作、多色免疫组化、DSP空间多组学等30多个,建立起了一套涵盖基因、蛋白、细胞以及组织水平实验的完整检测体系。
我们可提供从样本运输、储存管理、样本制备、样本检测到检测数据分析的全流程服务。凭借严格的实验室管理流程、标准化实验室操作、原始数据储存体系以及实验项目管理系统,已经为超过3000家客户单位提供服务,年检测样本超过100万,受到了广大客户的信任与支持。

声明:本篇文章在创作中部分采用了人工智能辅助。如有任何内容涉及版权或知识产权问题,敬请告知,我们承诺将在第一时间核实并撤下。
详见LabEx网站(
www.u-labex.com)或来电咨询!
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
联系电话:4001619919
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家

本网站销售的所有产品及服务均不得用于人类或动物之临床诊断或治疗,仅可用于工业或者科研等非医疗目的。



沪公网安备31011502400759号
营业执照(三证合一)