Schistosomiasis is a globally important helminthic disease of both humans and animals, and is the second most common parasitic disease after malaria. Although praziquantel is extensively used for treatment of parasitic diseases, drug resistance has been reported. Therefore, new drugs and effective vaccines are needed for continuous control of schistosomiasis. Eggs produced by schistosomes are responsible for the occurrence and spread of schistosomiasis. Revealing the reproductive mechanism of schistosomes will help to control this disease. In this study, the proteomic profiles of single-sex infected female worms and bisexual infected mature female worms of Schistosoma japonicum at 18, 21, 23 and 25 days p.i. were identified with isobaric tags for relative quantitation-coupled liquid chromatography-tandem mass spectrometry. Differentially expressed proteins were subsequently used for bioinformatic analysis. Six highly expressed differentially expressed proteins in mature female worms were selected and long-term interference with small interfering RNA (siRNA) was conducted to determine biological functions. SiRNA against S. japonicum translationally controlled tumour protein (SjTCTP) resulted in the most significant effect on the growth and development of MF worms. Sjtctp mRNA expression gradually increased over time with a high level of expression maintained at 25-42 days p.i., while levels were significantly higher in mature female worms than male and SF worms. The subsequent animal immune protection experiments showed that recombinant SjTCTP (rSjTCTP) reduced the number of adults by 44.7% (P < 0.01), average egg burden per gram of liver by 57.94% (P < 0.01), egg hatching rate by 47.57% (P < 0.01), and oviposition of individual females by 43.16%. rSjTCTP induced higher levels of serum IgG, IL-2, and IL-10 in mice. Collectively, these results show that SjTCTP is vital to reproduction of female worms and, thus, is a candidate antigen for immune protection.
Schistosoma japonicum translationally controlled tumour protein, which is associated with the development of female worms, as a target for control of schistosomiasis
乐备实是国内专注于提供高质量蛋白检测以及组学分析服务的实验服务专家,自2018年成立以来,乐备实不断寻求突破,公司的服务技术平台已扩展到单细胞测序、空间多组学、流式检测、超敏电化学发光、Luminex多因子检测、抗体芯片、PCR Array、ELISA、Elispot、PLA蛋白互作、多色免疫组化、DSP空间多组学等30多个,建立起了一套涵盖基因、蛋白、细胞以及组织水平实验的完整检测体系。
我们可提供从样本运输、储存管理、样本制备、样本检测到检测数据分析的全流程服务。凭借严格的实验室管理流程、标准化实验室操作、原始数据储存体系以及实验项目管理系统,已经为超过3000家客户单位提供服务,年检测样本超过100万,受到了广大客户的信任与支持。

声明:本篇文章在创作中部分采用了人工智能辅助。如有任何内容涉及版权或知识产权问题,敬请告知,我们承诺将在第一时间核实并撤下。
详见LabEx网站(
www.u-labex.com)或来电咨询!
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
联系电话:4001619919
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家

本网站销售的所有产品及服务均不得用于人类或动物之临床诊断或治疗,仅可用于工业或者科研等非医疗目的。



沪公网安备31011502400759号
营业执照(三证合一)