Hypoxic lung cancer cell-derived exosomal miR-21 mediates macrophage M2 polarization and promotes cancer cell proliferation through targeting IRF1
Background: Hypoxia is the hallmark of the tumor microenvironment (TME) and plays a critical role during the progress of tumor development. A variety of microRNAs (miRNAs) transmitted by tumor-derived exosomes were involved in intercellular communication. We aimed to elucidate the precise mechanism by which tumor cell-derived exosomes promote lung cancer development by affecting macrophage polarization under hypoxic conditions. Methods: CD163 signal in tumor tissue from lung cancer patients was detected by immunohistochemical (IHC). The M2 polarization-related markers were assessed by flow cytometry and western blot. Exosomes were isolated from normoxic and hypoxic lung cancer cell culture and characterized by transmission electron microscope (TEM), dynamic light scattering (DLS), and western blot. RNA sequencing was performed to show the abnormally expressed miRNAs in exosomes from normoxic and hypoxic lung cancer cell culture. In addition, CCK-8 and clone formation assays were used to assess cell proliferation. Dual luciferase reporter assay was used to evaluate the relationship between miR-21 and IRF1. For in vivo experiment, the male nude mice were injected with H1299 cells with exosomes and miR-21 mimic treatment. Results: Firstly, we found a strong CD163 signal in tumor tissue from lung cancer patients by IHC. Subsequently, we co-cultured lung cancer cell line H1299 with M0 macrophage THP-1 and found that H1299 in a hypoxic environment promoted THP-1 M2 polarization. PKH67 fluorescence staining experiments confirmed that exosomes of H1299 origin were able to enter THP-1 and induced M2 polarization. RNA sequencing of exosomes showed that miR-21 level was significantly higher in the hypoxic culture group compared to the normoxic group. Subsequent cellular assays showed that miR-21 inhibited the expression of IRF1 by targeting it. In addition, the overexpression of IRF1 reversed the role of miR-21 on macrophage M2 polarization. Finally, we have confirmed through animal experiments that either hypoxic environment or high miR-21 level promoted tumor progression. Conclusions: High miR-21 level in hypoxic environments promoted macrophage M2 polarization and induced lung cancer progression through targeting IRF1.Keywords: Exosome; Hypoxia; IRF1; Lung cancer; Macrophage M2 polarization; miR-21.
乐备实是国内专注于提供高质量蛋白检测以及组学分析服务的实验服务专家,自2018年成立以来,乐备实不断寻求突破,公司的服务技术平台已扩展到单细胞测序、空间多组学、流式检测、超敏电化学发光、Luminex多因子检测、抗体芯片、PCR Array、ELISA、Elispot、PLA蛋白互作、多色免疫组化、DSP空间多组学等30多个,建立起了一套涵盖基因、蛋白、细胞以及组织水平实验的完整检测体系。
我们可提供从样本运输、储存管理、样本制备、样本检测到检测数据分析的全流程服务。凭借严格的实验室管理流程、标准化实验室操作、原始数据储存体系以及实验项目管理系统,已经为超过3000家客户单位提供服务,年检测样本超过100万,受到了广大客户的信任与支持。

声明:本篇文章在创作中部分采用了人工智能辅助。如有任何内容涉及版权或知识产权问题,敬请告知,我们承诺将在第一时间核实并撤下。
详见LabEx网站(
www.u-labex.com)或来电咨询!
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
联系电话:4001619919
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家

本网站销售的所有产品及服务均不得用于人类或动物之临床诊断或治疗,仅可用于工业或者科研等非医疗目的。



沪公网安备31011502400759号
营业执照(三证合一)