Rosmarinic acid treatment protects against lethal H1N1 virus-mediated inflammation and lung injury by promoting activation of the h-PGDS-PGD2-HO-1 signal axis
浏览次数:3 分享:
Background:Rosmarinic acid (RosA) is a natural phenolic compound that possesses a wide-range of pharmacological properties. However, the effects of RosA on influenza A virus-mediated acute lung injury remain unknown. In this study, we aimed to explore whether RosA could protect against H1N1 virus-mediated lung injury and elucidate the underlying mechanisms.
Methods:Mice were intragastrically administered with RosA for 2 days before intranasal inoculation of the H1N1 virus (5LD50) for the establishment of an acute lung injury model. At day 7 post-infection (p.i.), gross anatomic lung pathology, lung histopathologic, and lung index (lung weight/body weight) were examined. Luminex assay, multiple immunofluorescence and flow cytometry were performed to detect the levels of pro-inflammatory cytokines and apoptosis, respectively. Western blotting and plasmid transfection with hematopoietic-type PGD2 synthase (h-PGDS) overexpression were conducted to elucidate the mechanisms.
Results:RosA effectively attenuated H1N1 virus-triggered deterioration of gross anatomical morphology, worsened lung histopathology, and elevated lung index. Excessive pro-inflammatory reactions, aberrant alveolar epithelial cell apoptosis, and cytotoxic CD8+ T lung recruitment in the lung tissues induced by H1N1 virus infection were observed to be reduced by RosA treatment. In vitro experiments demonstrated that RosA treatment dose-dependently suppressed the increased levels of pro-inflammatory mediators and apoptosis through inhibition of nuclear factor kappa B (NF-κB) and P38 MAPK signaling pathways in H1N1 virus-infected A549 cells, which was accompanied by promoting activation of the h-PGDS-PGD2-HO-1 signal axis. Furthermore, we strikingly found that h-PGDS inhibition significantly abrogated the inhibitory effects of RosA on H1N1 virus-mediated activation of NF-κB and P38 MAPK signaling pathways, resulting in diminishing the suppressive effects on the increased levels of pro-inflammatory cytokines and chemokines as well as apoptosis. Finally, suppressing h-PGDS prominently abolished the protective effects of RosA on H1N1 virus-mediated severe pneumonia and lung injury.
Conclusions:Taken together, our study demonstrates that RosA is a promising compound to alleviate H1N1 virus-induced severe lung injury through prompting the h-PGDS-PGD2-HO-1 signal axis.
Keywords:Apoptosis; H1N1 virus; HO-1; Inflammation; PGD2; Rosmarinic acid; h-PGDS.
详见LabEx网站( www.u-labex.com)或来电咨询!
基因水平:PCR Array、RT-PCR、PCR、单细胞测序
蛋白水平:MSD、Luminex、CBA、Elispot、Antibody Array、ELISA、Sengenics
细胞水平:细胞染色、细胞分选、细胞培养、细胞功能
组织水平:空间多组学、多重荧光免疫组化、免疫组化、免疫荧光
数据分析:流式数据分析、组化数据分析、多因子数据分析
联系电话:4001619919
联系邮箱:labex-mkt@u-labex.com
公众平台:蛋白检测服务专家