Endogenous and synthetic agonists of GPR119 differ in signalling pathways and their effects on insulin secretion in MIN6c4 insulinoma cells
Metabolic;代谢免疫分析;MSD;代谢/内分泌- Br J Pharmacol.
- 2008
- 9.473
- 28(34):8517-28.
- Canine,Human,Mouse,Non-Human Primate,Rat
- MSD
- MIN6c4 cell culture supernatants
- 免疫/内分泌
- 其它细胞
- Insulin
相关货号
LXMC04-1LXMH02-1LXMH03-4LXMH04-7LXMH07-3LXMH07-5LXMH07-7LXMH07-8LXMH10-9LXMH111-1LXMH22-1LXMH87-1LXMM02-2LXMM02-3LXMM03-2LXMM03-3LXMM06-2LXMM06-3LXMM06-4LXMM08-1LXMM10-3LXMM13-1LXMM58-1LXMN06-2LXMR02-2LXMR02-3LXMR03-3LXMR03-4LXMR06-1LXMR06-2LXMR07-1LXMR12-1
Abstract
Epidemiological studies suggest that chronic use of nonsteroidal anti-inflammatory drugs lowers the incidence of Parkinson's disease (PD) in humans and implicate neuroinflammatory processes in the death of dopamine (DA) neurons. Here, we demonstrate that regulator of G-protein signaling 10 (RGS10), a microglia-enriched GAP (GTPase accelerating protein) for Galpha subunits, is an important regulator of microglia activation. Flow-cytometric and immunohistochemical analyses indicated that RGS10-deficient mice displayed increased microglial burden in the CNS, and exposure to chronic systemic inflammation induced nigral DA neuron loss measured by unbiased stereology. Primary microglia isolated from brains of RGS10-deficient mice displayed dysregulated inflammation-related gene expression profiles under basal and stimulated conditions in vitro compared with that of primary microglia isolated from wild-type littermates. Similarly, knockdown of RGS10 in the BV2 microglia cell line resulted in dysregulated inflammation-related gene expression, overproduction of tumor necrosis factor (TNF), and enhanced neurotoxic effects of BV2 microglia on the MN9D dopaminergic cell line that could be blocked by addition of the TNF decoy receptor etanercept. Importantly, ablation of RGS10 in MN9D dopaminergic cells further enhanced their vulnerability to microglial-derived death-inducing inflammatory mediators, suggesting a role for RGS10 in modulating the sensitivity of dopaminergic neurons against inflammation-mediated cell death. Together, our findings indicate that RGS10 limits microglial-derived TNF secretion and regulates the functional outcome of inflammatory stimuli in the ventral midbrain. RGS10 emerges as a novel drug target for prevention of nigrostriatal pathway degeneration, the neuropathological hallmark of PD.
金课堂之文献解析 文献原文请点击
本网站销售的所有产品及服务均不得用于人类或动物之临床诊断或治疗,仅可用于工业或者科研等非医疗目的。