Connexin43 Hemichannel Targeting With TAT-Gap19 Alleviates Radiation-Induced Endothelial Cell Damage

TAT-Gap19;atherosclerosis;connexin43 hemichannels;endothelial damage;ionizing radiation;代谢/内分泌;毒理/病理;骨科;神经科学;心血管;病毒/微生物;免疫/炎症;衰老;细胞治疗;肿瘤;生殖生物学
浏览次数:106 分享:

R Ramadan, E Vromans, DC Anang, I Goetschalc, D Hoorelbeke, E Decrock, S Baatout, L Leybaert, A Aerts

  • Front Pharmacol
  • 2020
  • 5.988
  • 11(0):212.
  • Human
  • Luminex
  • Cell Culture Supernates
  • 生物标志物
  • 内皮细胞

Abstract

Background: Emerging evidence indicates an excess risk of late occurring cardiovascular diseases, especially atherosclerosis, after thoracic cancer radiotherapy. Ionizing radiation (IR) induces cellular effects which may induce endothelial cell dysfunction, an early marker for atherosclerosis. In addition, intercellular communication through channels composed of transmembrane connexin proteins (Cxs), i.e. Gap junctions (direct cell-cell coupling) and hemichannels (paracrine release/uptake pathway) can modulate radiation-induced responses and therefore the atherosclerotic process. However, the role of endothelial hemichannel in IR-induced atherosclerosis has never been described before.

Materials and methods: Telomerase-immortalized human Coronary Artery/Microvascular Endothelial cells (TICAE/TIME) were exposed to X-rays (0.1 and 5 Gy). Production of reactive oxygen species (ROS), DNA damage, cell death, inflammatory responses, and senescence were assessed with or without applying a Cx43 hemichannel blocker (TAT-Gap19).

Results: We report here that IR induces an increase in oxidative stress, cell death, inflammatory responses (IL-8, IL-1β, VCAM-1, MCP-1, and Endothelin-1) and premature cellular senescence in TICAE and TIME cells. These effects are significantly reduced in the presence of the Cx43 hemichannel-targeting peptide TAT-Gap19.

Conclusion: Our findings suggest that endothelial Cx43 hemichannels contribute to various IR-induced processes, such as ROS, cell death, inflammation, and senescence, resulting in an increase in endothelial cell damage, which could be protected by blocking these hemichannels. Thus, targeting Cx43 hemichannels may potentially exert radioprotective effects.

金课堂之文献解析 文献原文请点击

技术文章 更多

    研究领域 更多

      热点文献