Establishment of Three-Dimensional Bioprinted Bladder Cancer-on-a-Chip with a Microfluidic System Using Bacillus Calmette-Guérin
3D bioprinting;BCG vaccine;intravesical administration;urinary bladder neoplasms;代谢/内分泌;毒理/病理;骨科;神经科学;心血管;病毒/微生物;免疫/炎症;衰老;细胞治疗;肿瘤;生殖生物学- International Journal of Molecular Sciences
- 2021
- 6.208
- 22(16):8887.
- Human
- Luminex
- Cancer on Chip
- 泌尿系统
- 膀胱癌
Abstract
Immunotherapy of bladder cancer is known to have favorable effects, although it is difficult to determine which patients will show a good response because of the different tumor microenvironments (TME). Here, we developed a bladder cancer-on-a-chip (BCOC) to mimic the TME using three-dimensional (3D) bioprinting and microfluidic technology. We fabricated a T24 and a 5637-cell line-based BCOC that also incorporated MRC-5, HUVEC, and THP-1 cells. We evaluated the effects of TME and assessed the immunologic reactions in response to different concentrations of Bacillus Calmette-Guérin (BCG) via live/dead assay and THP-1 monocytic migration, and concentrations of growth factors and cytokines. The results show that cell viability was maintained at 15% filling density in circle-shaped cell constructs at 20 μL/min microfluidic flow rate. A 3D co-culture increased the proliferation of BCOCs. We found that the appropriate time to evaluate the viability of BCOC, concentration of cytokines, and migration of monocytes was 6 h, 24 h, and three days after BGC treatment. Lastly, the immunotherapeutic effects of BCOC increased according to BCG dosage. To predict effects of immunotherapeutic agent in bladder cancer, we constructed a 3D bioprinted BCOC model. The BCOC was validated with BCG, which has been proven to be effective in the immunotherapy of bladder cancer.
金课堂之文献解析 文献原文请点击
本网站销售的所有产品及服务均不得用于人类或动物之临床诊断或治疗,仅可用于工业或者科研等非医疗目的。