Robust decomposition of cell type mixtures in spatial transcriptomics

single cell sequencing;SNS;单细胞测序;单细胞多组学
浏览次数:71 分享:

Dylan M Cable, Evan Murray, Luli S Zou, Aleksandrina Goeva, Evan Z Macosko, Fei Chen #, Rafael A Irizarry #

  • Nat Biotechnol
  • 2022
  • 68.164
  • 40(4):517-526.
  • 单细胞测序
  • T cell
  • 技术分享
  • T细胞

Abstract

A limitation of spatial transcriptomics technologies is that individual measurements may contain contributions from multiple cells, hindering the discovery of cell-type-specific spatial patterns of localization and expression. Here, we develop robust cell type decomposition (RCTD), a computational method that leverages cell type profiles learned from single-cell RNA-seq to decompose cell type mixtures while correcting for differences across sequencing technologies. We demonstrate the ability of RCTD to detect mixtures and identify cell types on simulated datasets. Furthermore, RCTD accurately reproduces known cell type and subtype localization patterns in Slide-seq and Visium datasets of the mouse brain. Finally, we show how RCTD's recovery of cell type localization enables the discovery of genes within a cell type whose expression depends on spatial environment. Spatial mapping of cell types with RCTD enables the spatial components of cellular identity to be defined, uncovering new principles of cellular organization in biological tissue. RCTD is publicly available as an open-source R package at https://github.com/dmcable/RCTD .
金课堂之文献解析 文献原文请点击

技术文章 更多

    研究领域 更多

      热点文献